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Abstract. The transverse electric fieldEy which appears in lateral superlattices (SLs) in the
presence of a high applied electric fieldEx and a low magnetic fieldH normal to the SL plane
(H‖OZ) is calculated. When the electron energy spectrum is non-additive, the fieldEy contains
both the Hall field and the spontaneous transverse electric field which exists withoutH. The
field Ey is a multiple-valued and sign-changing function ofEx . The kinetic potential whose
minimum corresponds to the stationary state of the non-equilibrium electron gas is used. The
magnetoresistance caused by the appearance of a spontaneous transverse EMF is investigated.

In the present work the peculiarities of the Hall effect and the magnetoresistance (MR) in
lateral superlattices (SLs) in a non-quantizing low magnetic field and a high electric field
are investigated. Such SLs are constructed on the basis of dimensionally quantum-confined
layers of AlxGa1−xAs. The energy of a miniband is given by [1, 2]
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where 21 is the allowed miniband width,p1 andp2 are the Cartesian components of the
carrier crystal momentump and d0 is the period of the SL. With respect to the spectrum
(1) the peculiarities of the Hall effect and of the MR are connected closely with the choice
of the direction of applied electric field relative to the principal axes of the SL; we assume
that this direction makes an angle of 45◦ with some of these axes. Correspondingly we
define the OX axis as directed along the applied field. In this reference frame the spectrum
(1) becomes non-additive:

ε(p) = 1 − 1 cos
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)
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(2)

whered = d021/2.
In [3] the conductivity in the case of a non-additive non-parabolic dispersion law of

form (2) has been studied, the conductor being an open circuit in the transverse (with respect
to longitudinal electric fieldEx) direction. It was shown that in the absence of a magnetic
field the spontaneous appearance of a transverse EMF is possible. This effect presents an
example of a non-equilibrium second-order phase transition, in which the transverse EMF
plays the role of order parameter and the applied field is the controlling parameter. The
existence of the transverse EMF atH = 0 must evidently influence the magnitude of
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the transverse field when the magnetic field (H‖OZ) is present. As far as the non-linear
effects are considered, the ‘pure’ Hall effect cannot be separated in this case. Thus when
speaking about the Hall field we mean the transverse electric field which includes both
above-mentioned factors.

To calculate the current densityj0 due to the carriers with the dispersion law of form
(2) we confine ourselves to the semiclassical and single-band approximation1 � τ−1h̄,
eEd, andeEd � εg, whereεg is the forbidden miniband width andτ is the mean free time
of electrons.

The magnetic field is assumed to be non-quantizing, i.e. ¯hωc ≡ |eH1d2/ch̄| � T (T
is the temperature in energy units), and weak, i.e.ωcτ � 1.

If we change to dimensionless variables, i.e.pd/h̄ → p; Eeτd/h̄ → E, ωcτ → ωc,
and t/τ → t , the necessary charge motion equation may be presented as follows:

dp

dt
= E + v(p) × ωc (ωc‖H) (3)

wherev = 1/1(∂ε/∂p) is the dimensionless charge velocity.
We use the Boltzmann kinetic equation with theτ = constant approximation of the

collision integral. Then [4]

j =
∫ ∞

0
v(p(t)) exp(−t) dt (4)

where j = j0h̄/en1d is the dimensionless current density,p(t) is the solution of
equation (3) with the initial conditionp(0) = 0, and n is the carrier concentration in
the layer. Using the linear approximation onωc and (2)–(4) we get
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The expressions forjy and j (0)
y have the form (5) and (6) with the replacementy ↔ x

andωc → −ωc. Note that, as these formulae are linear approximately with respect to the
magnetic field, they are exact with respect to the electric field.

For a given applied fieldEx the transverse fieldEy is determined by the boundary
conditions. In the following we assume the sample to be an open circuit:

jy = 0. (7)

This condition represents the equation for a transverse fieldEy = Ey(Ex). Provided that
ωc = 0, equation (7) has the following solutions:

Ey = 0 (8)

Ey = ±
√

E2
x − 1 (|Ex | > 1). (9)

As was shown in [3], for|Ex | < 1 the null solution (8) is stable with respect to
fluctuations of the fieldEy whereas, if|Ex | > 1, then the non-zero solution (9) applies.
Thus at|Ex | > 1 the transverse field appears in one of two mutually opposite directions;
the direction is selected by a random fluctuation or by an initial (‘seed’) inhomogeneity.
In this case the above-mentioned non-equilibrium (kinetic) second-order phase transition
takes place at the bifurcation point|Ex | = 1. The appearance of the transverse field (9)
represents perhaps the simplest example of self-organization in the non-equilibrium quasi-
two-dimensional electron gas.
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Note also that the current–voltage characteristic is influenced by the non-zero transverse
field in the following way:

jx = Ex

1 + E2
x

0 6 |Ex | 6 1 (10)

jx = (2Ex)
−1 |Ex | > 1. (11)

In the absence of a transverse field the whole current–voltage characteristic would be
described by equation (10).

For ωc 6= 0, equation (7) has been solved numerically. The results of calculations under
the conditionsωc = 0.1 andωc = 0 are presented in figure 1. The regionEx < 1 attracts
attention because, on the one hand, in the absence of magnetic field we haveEy = 0 and, on
the other hand, the Hall effect appears unusually (the fieldEy has a maximum and changes
sign). In spite of the fact that the weak magnetic field is considered (ωc � 1) it plays the
principal role because it smears out the phase transition and enforces the system to make a
completely determinate selection between the conditions which are of equal probability at
ωc = 0. Thus forced bifurcation takes place.

Figure 1. Dependence of the transverse fieldEy on the applied fieldEx : ——, stable state at
ωc = 0.1; – – –,stable state atωc = 0; · · · · · ·, unstable states.

When investigating the stability of obtained solutions we start from the condition [5]

djy

dEy

> 0 (Ex = fixed) (12)

the fulfilment of which means that, near the stable stationary values ofEy defined by (7),
the small fluctuation in the transverse field tends to zero asymptotically. The asymptotically
stable states defined by criterion (12) are delineated in figure 1 by solid curves. Note that at
Ex > 1.065 the Hall field has two stable values (bistability) for a givenEx . (The possibility
of ‘switching’ of the Hall field together with the change in sign in the one-dimensional SL
has been mentioned in [6].) In figure 2 the current–voltage characteristic is presented which
has been found from (5) and (6) and by the values ofEy obtained atωc = 0.1.
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Figure 2. The current–voltage characteristic atωc = 0 (– – –) and atωc = 0.1 (——): · · · · · ·,
unstable states ofEy (see figure 1) atωc = 0.1.

We also investigate the stability using the method proposed in [3] which consists of the
following. The function

8(Ey) =
∫ Ey

0
jy(E

′
y) dE′

y + constant (Ex = fixed) (13)

is defined. The conditions (7) and (12) may now be formulated in the form

d8

dEy

= 0
d28

dE2
y

> 0. (14)

These formulae mean that in the given non-equilibrium situation the function (13) attains
its minimum in the stationary state. Thus the function8 may be regarded as the analogue of
a thermodynamic potential for equilibrium systems. This analogy permits us in particular to
use the conventional Landau method (used in the theory of equilibrium phase transitions) to
investigate the stability of solutions of equation (7). This approach confirms the conclusions
deduced using (7) and (12) and provides the possibility of distinguishing the absolute
minimum from local minima. In particular it appears that the depth of the minimum of
the ‘potential’ 8 on the lower stable branch (figure 1) is greater than the corresponding
depth on the upper stable branch. WhenExc = 1.065, the condition d28/dE2

y = 0 is
fulfilled at the critical pointEyc = 0.45. Note that the dotted branch in figure 1 corresponds
to the maximum of the ‘potential’8.

The magnetoresistance is defined in a standard way according to

1ρ

ρ
= ρ(ωc) − ρ(0)

ρ(0)
(15)

whereρ(ωc) = Ex/jx ; in addition we find the MR as a function ofEx , the value ofωc

being fixed. Using the values ofEy obtained by (7) we get1ρ/ρ ∼ ω2
c . Therefore,

generally speaking, the terms∼ ω2
c must be considered. This procedure contains no

principal difficulties but is rather cumbersome. Therefore we restrict ourselves by graphical
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illustration of the result atωc = 0.3 (figure 3). Curve 1 corresponds to a lower stable
branch, and curve 2 corresponds to an upper stable branch, these branches being analogous
to those presented by solid curves in figure 1. It should be noted that in this case the MR
presented in figure 3 differs insignificantly from that calculated from (5) and (6).

Figure 3. The MR as a function of applied field atωc = 0.3: line 2, unstable states.

At Exc = 1.14 the MR vanishes and atEx > Exc it becomes negative. Such behaviour
of the MR is caused by the appearance of a spontaneous transverse EMF. This conclusion
may be confirmed by the fact that the MR is positive at anyEx in the case when the
spontaneous EMF is not considered. The observed peculiarities of the transverse field and
MR are related finally to the fact that the spectrum (2) is bounded, non-parabolic (or non-
quadratic), anisotropic and mostly with the non-additivity of (2). Numerical estimations
of the effects considered lead to estimations of the measurement units of electric intensity
(h̄/eτd) and current density (en1d/h̄). For d = 10−6 cm, 1 = 10−2 eV, n = 1015 cm−3,
τ = 10−12 s we geth̄/eτd ' 660 V cm−1 and en1d/h̄ ' 2.4 × 103 A cm−2. In this
connection the conditionωcτ = 1 corresponds to the magnetic intensityH ' 400 Oe.

In conclusion we shall discuss shortly theτ = constant approximation of the collision
integral used in the present paper. Naturally this approximation does not take into account
the influence of anisotropy and non-parabolicity of the spectrum on the dispersion of
electrons, and for two-dimensional problems it is less than for one-dimensional problems
[7]. At the same time the comparison of kinetic coefficients obtained in theτ =
constant approximation for a one-dimensional SL shows satisfactory consistency with those
calculated when the anisotropy is considered (in the limiting case of a low electric field) [8],
the difference being only in factors of order 1. Also we have made a series of numerical
calculations of the current density based on Chamber’s [9] method in which the power
dependenceτ = τ0ε

s has been used. The results show that theτ = constant approximation
describes correctly the qualitative peculiarities of regarded phenomenon. We also believe
that thorough analysis of numerous experiments on electron transport in a one-dimensional
SL carried out in [10] indicates that in many situations the caseτ = constant may prove to
be quite realistic.
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